If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x^2)+14x+20=0
a = 2; b = 14; c = +20;
Δ = b2-4ac
Δ = 142-4·2·20
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6}{2*2}=\frac{-8}{4} =-2 $
| .083=X/(x=6805537) | | 7000=7000+7000(0.0425t) | | 3(6-4x)=-2(x-9) | | (1+x)^2/3+(1-x)^2/3=4(1-x^2)^1/3 | | 21/2-21/4=7a/16 | | 20x+12=14x+20 | | -3-3(1-4p)=-66 | | -3(n+6)=2n-3 | | -5x+6=15x+134-12x | | 21-3p=-4(p-4) | | 12-2b=b+3 | | 1/8(18-6x)=8-2x | | -3+4b=b-6 | | 4w+222=7.9 | | 19x=21x | | 19+2n=3n | | (2x+1)²=(2x-3)(x+5)-3 | | 2x+5x+3=3x+19 | | 7+p=19 | | 5(3-5n)=90 | | 3(x-1)-4x=5-(2x+1) | | X^3-7x^2+0x-36=0 | | 3(x+1)-4x=5-(2x+1) | | 3x2+16x+21=0 | | -3k=-2k+7 | | 4x+2=-2(8-2x) | | -4-5w=5-6w | | -4-5w=6w | | x+3/4x+3/4x=180 | | 4j-6=10j | | S(54.462)=7/h | | -4p=-3p+10 |